This function wraps around the lm function in order to make it more friendly to pipe syntax (with the data first).
Usage
zlm(
data,
formula,
subset,
weights,
na.action,
method = "qr",
model = TRUE,
x = FALSE,
y = FALSE,
qr = TRUE,
singular.ok = TRUE,
contrasts = NULL,
offset,
...
)
Arguments
- data
A
data.frame
containing the model data.- formula
The
formula
to be fitted.- subset
See the
lm
function.- weights
See the
lm
function.- na.action
See the
lm
function.- method
See the
lm
function.- model
See the
lm
function.- x
See the
lm
function.- y
See the
lm
function.- qr
See the
lm
function.- singular.ok
See the
lm
function.- contrasts
See the
lm
function.- offset
See the
lm
function.- ...
Other arguments to be passed to the
lm
function.
See also
zglm is a wrapper for
glm
, to fit generalized linear models.
Examples
# Usage is possible without pipes
zlm( cars, dist ~ speed )
#>
#> Call:
#> lm(formula = dist ~ speed, data = cars)
#>
#> Coefficients:
#> (Intercept) speed
#> -17.579 3.932
#>
# zfit works well with dplyr and magrittr pipes
if ( require("dplyr", warn.conflicts=FALSE) ) {
# Pipe cars dataset into zlm for fitting
cars %>% zlm(speed ~ dist)
# Process iris with filter before piping to zlm
iris %>%
filter(Species == "setosa") %>%
zlm(Sepal.Length ~ Sepal.Width + Petal.Width)
}
#>
#> Call:
#> lm(formula = Sepal.Length ~ Sepal.Width + Petal.Width, data = .)
#>
#> Coefficients:
#> (Intercept) Sepal.Width Petal.Width
#> 2.6300 0.6664 0.3723
#>
# zfit also works well with the native pipe
if ( require("dplyr") && getRversion() >= "4.1.0" ) {
# Pipe cars dataset into zlm for fitting
cars |> zlm(speed ~ dist)
# Process iris with filter() before piping. Print a
# summary of the fitted model using zprint() before
# assigning the model itself (not the summary) to m.
m <- iris |>
filter(Species == "setosa") |>
zlm(Sepal.Length ~ Sepal.Width + Petal.Width) |>
zprint(summary)
}
#>
#> Call:
#> lm(formula = Sepal.Length ~ Sepal.Width + Petal.Width, data = filter(iris,
#> Species == "setosa"))
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.50350 -0.17022 0.02213 0.15569 0.46314
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.63000 0.30928 8.504 4.56e-11 ***
#> Sepal.Width 0.66640 0.09219 7.229 3.68e-09 ***
#> Petal.Width 0.37227 0.33159 1.123 0.267
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.2379 on 47 degrees of freedom
#> Multiple R-squared: 0.5631, Adjusted R-squared: 0.5445
#> F-statistic: 30.29 on 2 and 47 DF, p-value: 3.541e-09
#>